Mesoscopic magnetic systems: From fundamental properties to devices
Related publications (97)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nanofluidic systems offer a huge potential for discovery of new molecular transport and chemical phenomena that can be employed for future technologies. Herein, we report on the transport behavior of surface-reactive compounds in a nanometer-scale flow of ...
Bioresorbable implantable medical devices show great potential for applications requiring medical care over well-defined periods of time. Such implants naturally degrade and resorb in the body, which eliminates adverse long-term effects or the need for a s ...
Grayscale electron beam lithography (g-EBL) is a fabrication technique that allows for tunable control of resist topography. In most cases, the height of the structures is in the submicron regime. Here, we present an extensive experimental characterization ...
Understanding spin-selective interactions between electrons and chiral molecules is critical to elucidating the significance of electron spin in biological processes and to assessing the potential of chiral assemblies for organic spintronics applications. ...
We investigate spin states of few electrons in a double quantum dot by coupling them to a magnetic field resilient NbTiN microwave resonator. The electric field of the resonator couples to the electric dipole moment of the charge states in the double dot. ...
The resonant excitation of free electrons in metallic nanostructures enables extreme near field intensities along with a deep sub-wavelength localization of the electromagnetic energy. This has been exploited to enhance light-matter interaction down to the ...
This thesis presents combined experimental and theoretical investigations of nanoscale, surface-supported magnets based on rare earths (RE) to understand and control the magnetic properties down to the scale of single atoms. We present the effects of adato ...
The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3-12 atoms(1-3). Long magnetic relaxation times have ...
We present an innovative fabrication method for solid-state nanoporous membranes based on the casting of sacrificial silicon nanostructures. The process allows the individual definition of geometry and placement of each nanopore through e-beam lithography ...
The ability to obtain three-dimensional (3-D) information about morphologies of nanostructures elucidates many interesting properties of materials in both physical and biological sciences. Here we demonstrate a novel method in scanning transmission electro ...