Publication

Group testing for connected communities

Abstract

In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in disjoint communities: each individual participates in a community, and its infection probability depends on the community (s)he participates in. Use cases include families, students who participate in several classes, and workers who share common spaces. Group testing reduces the number of tests needed to identify the infected individuals by pooling diagnostic samples and testing them together. We show that if we design the testing strategy taking into account the community structure, we can significantly reduce the number of tests needed for adaptive and non-adaptive group testing, and can improve the reliability in cases where tests are noisy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.