Novel Methods for Incorporating Prior Knowledge for Automatic Speech Assessment
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The goal of this thesis is to improve current state-of-the-art techniques in speaker verification
(SV), typically based on âidentity-vectorsâ (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using variou ...
Modeling directly raw waveform through neural networks for speech processing is gaining more and more attention. Despite its varied success, a question that remains is: what kind of information are such neural networks capturing or learning for different t ...
Speaker verification systems traditionally extract and model cepstral features or filter bank energies from the speech signal. In this paper, inspired by the success of neural network-based approaches to model directly raw speech signal for applications su ...
Sign language conveys information through multiple channels, such as hand shape, hand movement, and mouthing. Modeling this multi-channel information is a highly challenging problem. In this paper, we elucidate the link between spoken language and sign lan ...
In a recent work, we have shown that speaker verification systems can be built where both features and classifiers are directly learned from the raw speech signal with convolutional neural networks (CNNs). In this framework, the training phase also decides ...
Phonological classes define articulatory-free and articulatory-bound phone attributes. Deep neural network is used to estimate the probability of phonological classes from the speech signal. In theory, a unique combination of phone attributes form a phonem ...
Certain brain disorders, resulting from brainstem infarcts, traumatic brain injury, stroke and amyotrophic lateral sclerosis, limit verbal communication despite the patient being fully aware. People that cannot communicate due to neurological disorders wou ...
In this paper, we introduce a novel approach for Language Identification (LID). Two commonly used state-of-the-art methods based on UBM/GMM I-vector technique, combined with a back-end classifier, are first evaluated. The differential factor between these ...
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
This paper describes SIIP (Speaker Identification Integrated Project) a high performance innovative and sustainable Speaker Identification (SID) solution, running over large voice samples database. The proposed solution is based on development, integration ...