Learning Self-Exciting Temporal Point Processes Under Noisy Observations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equ ...
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties ...
This work presents and compare two approaches for the semantic segmentation of broadcast news: the first is based on Social Network Analysis, the second is based on Poisson Stochastic Processes. The experiments are performed over 27 hours of material: prel ...
The sparse linear model has seen many successful applications in Statistics, Machine Learning, and Computational Biology, such as identification of gene regulatory networks from micro-array expression data. Prior work has either approximated Bayesian infer ...
Linear Gaussian State-Space Models are widely used and a Bayesian treatment of parameters is therefore of considerable interest. The approximate Variational Bayesian method applied to these models is an attractive approach, used successfully in application ...
Linear Gaussian State-Space Models are widely used and a Bayesian treatment of parameters is therefore of considerable interest. The approximate Variational Bayesian method applied to these models is an attractive approach, used successfully in application ...
Many facets of Bayesian Modelling are firmly established in Machine Learning and give rise to state-of-the-art solutions to application problems. The sheer number of techniques, ideas and models which have been proposed, and the terminology, can be bewilde ...
The spectral density function plays a key role in fitting the tail of multivariate extremal data and so in estimating probabilities of rare events. This function satisfies moment constraints but unlike the univariate extreme value distributions has no simple ...
The framework of graphical models is a cornerstone of applied Statistics, allowing for an intuitive graphical specification of the main features of a model, and providing a basis for general Bayesian inference computations though belief propagation (BP). I ...
This work presents and compare two approaches for the semantic segmentation of broadcast news: the first is based on Social Network Analysis, the second is based on Poisson Stochastic Processes. Preliminary experiments address the problem of segmenting aut ...