Publication

Equinox: Training (for Free) on a Custom Inference Accelerator

Abstract

DNN inference accelerators executing online services exhibit low average loads because of service demand variability, leading to poor resource utilization. Unfortunately, reclaiming idle inference cycles is difficult as other workloads can not execute on a custom accelerator. With recent proposals for the use of fixed-point arithmetic in training, there are opportunities for training services to piggyback on inference accelerators. We make the observation that a key challenge in doing so is maintaining service-level latency constraints for inference. We show that relaxing latency constraints in an inference accelerator with ALU arrays that are batching-optimized achieves near-optimal throughput for a given area and power envelope while maintaining inference services' tail latency goals. We present Equinox, a custom inference accelerator designed to piggyback training. Equinox employs a uniform arithmetic encoding to accommodate inference and training and a priority hardware scheduler with adaptive batching that interleaves training during idle inference cycles. For a500𝜇𝑠 inference service time constraint, Equinox achieves 6.67× higher throughput than a latency-optimal inference accelerator. Despite not being optimized for training services, Equinox achieves up to 78% of the throughput of a dedicated training accelerator that saturates the available compute resources and DRAM bandwidth. Finally, Equinox’s controller logic incurs less than 1% power and area overhead, while the uniform encoding (to enable training) incurs 13% power and 4% area overhead compared to a fixed-point inference accelerator.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (39)
AI accelerator
An AI accelerator is a class of specialized hardware accelerator or computer system designed to accelerate artificial intelligence and machine learning applications, including artificial neural networks and machine vision. Typical applications include algorithms for robotics, Internet of Things, and other data-intensive or sensor-driven tasks. They are often manycore designs and generally focus on low-precision arithmetic, novel dataflow architectures or in-memory computing capability.
Vision processing unit
A vision processing unit (VPU) is (as of 2023) an emerging class of microprocessor; it is a specific type of AI accelerator, designed to accelerate machine vision tasks. Vision processing units are distinct from video processing units (which are specialised for video encoding and decoding) in their suitability for running machine vision algorithms such as CNN (convolutional neural networks), SIFT (scale-invariant feature transform) and similar.
Graphics processing unit
A graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and (either on a video card or embedded on the motherboards, mobile phones, personal computers, workstations, and game consoles). After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.
Show more
Related publications (32)

Post-Moore's Law Fusion: High-Bandwidth Memory, Accelerators, and Native Half-Precision Processing for CPU-Local Analytics

Anastasia Ailamaki, Viktor Sanca

Modern data management systems aim to provide both cutting-edge functionality and hardware efficiency. With the advent of AI-driven data processing and the post-Moore Law era, traditional memory-bound scale-up data management operations face scalability ch ...
2023

Compilation and Design Space Exploration of Dataflow Programs for Heterogeneous CPU-GPU Platforms

Aurélien François Gilbert Bloch

Today's continued increase in demand for processing power, despite the slowdown of Moore's law, has led to an increase in processor count, which has resulted in energy consumption and distribution problems. To address this, there is a growing trend toward ...
EPFL2023

Chaosity: Understanding Contemporary NUMA-architectures

Anastasia Ailamaki, Viktor Sanca, Hamish Mcniece Hill Nicholson, Andreea Nica, Syed Mohammad Aunn Raza

Modern hardware is increasingly complex, requiring increasing effort to understand in order to carefully engineer systems for optimal performance and effective utilization. Moreover, established design principles and assumptions are not portable to modern ...
2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.