Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Operators from various industries have been pushing the adoption of wireless sensing nodes for industrial monitoring, and such efforts have produced sizeable condition monitoring datasets that can be used to build diagnosis algorithms capable of warning ma ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
This repository contains microphysics routines, scripts, and processed data from the Weather Research and Forecasting (WRF) model simulations presented in the paper "RaFSIP: Parameterizing ice multiplication in models using a machine learning approach", by ...
Driven by the need for more efficient and seamless integration of physical models and data, physics -informed neural networks (PINNs) have seen a surge of interest in recent years. However, ensuring the reliability of their convergence and accuracy remains ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
A range of behavioral and contextual factors, including eating and drinking behavior, mood, social context, and other daily activities, can significantly impact an individual's quality of life and overall well-being. Therefore, inferring everyday life aspe ...
Dataset corresponding to the following manuscript: Slagter, A., Setyadji, J.A., Vogt, E.L. et al. Nanoindentation Hardness and Modulus of Al2O3–SiO2–CaO and MnO–SiO2–FeO Inclusions in Iron. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-0 ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...