**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Matter matters in Einstein-Cartan gravity

Abstract

We study scalar, fermionic and gauge fields coupled nonminimally to gravity in the Einstein-Cartan formulation. We construct a wide class of models with nondynamical torsion whose gravitational spectra comprise only themassless graviton. Eliminating nonpropagating degrees of freedom, we derive an equivalent theory in themetric formulation of gravity. It features contact interactions of a certain formbetween, and among, the matter and gauge currents. We also discuss briefly the inclusion of curvature-squared terms.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (31)

Related publications (35)

Scalar curvature

In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls.

Curvature

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature at a point of a differentiable curve is the curvature of its osculating circle, that is the circle that best approximates the curve near this point.

Élie Cartan

Élie Joseph Cartan (kaʁtɑ̃; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry. He also made significant contributions to general relativity and indirectly to quantum mechanics. He is widely regarded as one of the greatest mathematicians of the twentieth century. His son Henri Cartan was an influential mathematician working in algebraic topology.

Georgios Karananas, Sebastian Zell

We find the conditions under which scale-invariant Einstein-Cartan gravity with scalar matter fields leads to an approximate conformal invariance of the flat space particle theory up to energies of the order of the Planck mass. In the minimal setup, these ...

General relativity (GR) exists in different formulations. They are equivalent in pure gravity but generically lead to distinct predictions once matter is included. After a brief overview of various versions of GR, we focus on metric-affine gravity, which a ...

In the framework of mixed Higgs-Starobinsky inflation, we consider the generation of Abelian gauge fields due to their nonminimal coupling to gravity (in two different formulations of gravity-metric and Palatini). We couple the gauge-field invariants F mu ...

2022