Publication

Decoding of error-related potentials in continuous feedback protocols for personalized human computer interaction

Fumiaki Iwane
2021
EPFL thesis
Abstract

The ability to notice erroneous behavior is crucial for effective training. Within the framework of neuroprosthetics, numerous studies in electroencephalography (EEG) confirm the existence of neural correlates when humans perceive the erroneous actions of the device. Subsequently, the decoding of this correlate has been used to correct the erroneous behavior performed by the agent or to tune the behavioral strategy of the agent, among others. However, a main limitation of current approaches is that the actions of the agent were discretized, thus restraining the usability of such systems. The main objective of this PhD study is to study, and decode, the neural correlates of error evaluation under continuous trajectories performed by external agents; and to use this decoding to tune the continuous behavior of the agent for individual users. To accomplish this goal, two essential questions will be investigated: (i) whether it is possible to infer individual preference under continuous state-action scenarios, and (ii) how to create a reliable decoding pipeline in a continuous fashion. Results obtained during the first year of the PhD have confirmed the existence of such correlates under continuous motions of a robotic arm. Furthermore, such correlates encode individual preferences, indicating that the neural prosthesis can be also customized for individual users, which may play an important rule to increase the quality of brain-computer based assistance. This property not only will increase the level of perceived assistance provided by a brain-computer interface, but also may facilitate embodiment of the brain-controlled device.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Brain implant
Brain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's brain – usually placed on the surface of the brain, or attached to the brain's cortex. A common purpose of modern brain implants and the focus of much current research is establishing a biomedical prosthesis circumventing areas in the brain that have become dysfunctional after a stroke or other head injuries. This includes sensory substitution, e.g., in vision.
Brain–computer interface
A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI) or smartbrain, is a direct communication pathway between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions. They are often conceptualized as a human–machine interface that skips the intermediary component of the physical movement of body parts, although they also raise the possibility of the erasure of the discreteness of brain and machine.
Neuroprosthetics
Neuroprosthetics (also called neural prosthetics) is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the brain to a computer rather than a device meant to replace missing biological functionality. Neural prostheses are a series of devices that can substitute a motor, sensory or cognitive modality that might have been damaged as a result of an injury or a disease.
Show more
Related publications (52)

Unraveling behavior and cortical signals to guide the development of soft neuroprostheses for auditory restoration and spreading depolarization

Emilie Cornelia Maria Revol

Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
EPFL2024

Development of a Transient Neural Interface for Minimally Invasive Recording and Stimulation

Adele Fanelli

Transient electronics enabling devices to safely disappear in the environment can be applied not only in green electronics, but also in bioelectronic medicine. Neural implants able to degrade harmlessly inside the body eliminate the need for removal surger ...
EPFL2022

Learning to control a BMI-driven wheelchair for people with severe tetraplegia

José del Rocio Millán Ruiz, Kyuhwa Lee, Serafeim Perdikis, Luca Tonin, Bastien Orset

Mind-controlled wheelchairs are an intriguing assistive mobility solution applicable in complete paralysis. Despite progress in brain-machine interface (BMI) technology, its translation remains elusive. The primary objective of this study is to probe the h ...
Cambridge2022
Show more
Related MOOCs (6)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.