A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
Related publications (77)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fluid driven fractures propagate in the upper earth crust either naturally or in response to engineeredfluid injections. The quantitative prediction of their evolution is critical in order to better understandtheir dynamics as well as to optimize their cre ...
An accurate solution of the wave equation at a fluid-solid interface requires a correct implementation of the boundary condition. Boundary conditions at acousto-elastic interface require continuity of the normal component of particle velocity and traction, ...
In this paper, we propose a monolithic algorithm for the numerical solution of the electromechanics model of the left ventricle in the human heart. Our coupled model integrates the monodomain equation with the Bueno-Orovio minimal model for electrophysiolo ...
Deriving the time-dependent expected reward function associated with a continuous-time Markov chain involves the computation of its transient deviation matrix. In this paper we focus on the special case of a finite quasi-birth-and-death (QBD) process, moti ...
We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such ...
In this paper, we propose a three-level linearized implicit difference scheme for the two-dimensional spatial fractional nonlinear complex Ginzburg-Landau equation. We prove that the difference scheme is uniquely solvable, stable and convergent under mild ...
Finite volume methods are proposed for computing approximate pathwise entropy/kinetic solutions to conservation laws with flux functions driven by low-regularity paths. For a convex flux, it is demonstrated that driving path oscillations may lead to "cance ...
We consider the numerical approximation of lipid biomembranes at equilibrium described by the Canham-Helfrich model, according to which the bending energy is minimized under area and volume constraints. Energy minimization is performed via L-2-gradient flo ...
Soft adhesive pads attached to a rigid substrate show stick-slip behavior upon loading: they detach and reattach in a different location. This is accompanied by the lifting of the adhesive, the mechanical wave carrying this motion being known as a Schallam ...
We consider an adaptive isogeometric method (AIGM) based on (truncated) hierarchical B-splines and continue the study of its numerical properties. We prove that our AIGM is optimal in the sense that delivers optimal convergence rates as soon as the solutio ...