Publication

Disinformation from the Inside: Combining Machine Learning and Journalism to Investigate Sockpuppet Campaigns

Rebekah Jean Overdorf
2020
Conference paper
Abstract

This paper brings together machine learning and investigative journalism to examine sockpuppets accounts, a historical breed of fake accounts that are non-automated and human-controlled. Due to their flexible and human-centered nature, sockpuppets pose a complication for purely technological approaches to detecting and studying fake accounts. We find that as machine learning-based detection methods of bots slowly grow stronger, adversaries engaging in disinformation are turning to such sockpuppets accounts, and in particular a subset of sockpuppets that we call "infiltrators" - those that aim to integrate into a community in order spread disinformation. This represents a new stage in the evolution of the sockpuppet concept: where bots seek to simulate audiences and drown online social media platforms with a particular point of view, infiltrators seek to persuade and assimilate genuine audiences from within. In addition to these insights into infiltrator sockpuppets, combining machine learning and investigative journalism enables learning something more than detection and important patterns of activity: it can also gain a sense of the motivations and reasoning of adversaries who engage in disinformation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (29)
Fake news
Fake news is false or misleading information presented as news. Fake news often has the aim of damaging the reputation of a person or entity, or making money through advertising revenue. Although false news has always been spread throughout history, the term "fake news" was first used in the 1890s when sensational reports in newspapers were common. Nevertheless, the term does not have a fixed definition and has been applied broadly to any type of false information.
Machine learning
Machine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
Astroturfing
Astroturfing is the practice of hiding the sponsors of a message or organization (e.g., political, advertising, religious, or public relations) to make it appear as though it originates from, and is supported by, grassroots participants. It is a practice intended to give the statements or organizations credibility by withholding information about the source's financial backers. The term astroturfing is derived from AstroTurf, a brand of synthetic carpeting designed to resemble natural grass, as a play on the word "grassroots".
Show more
Related publications (37)

Few-shot Learning for Efficient and Effective Machine Learning Model Adaptation

Arnout Jan J Devos

Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.Althou ...
EPFL2024

Robust machine learning for neuroscientific inference

Steffen Schneider

Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
EPFL2024

Random matrix methods for high-dimensional machine learning models

Antoine Philippe Michel Bodin

In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
EPFL2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.