Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In-situ laser sintering can be used to locally sinter conductive inks in an uninterrupted process, enabling the embedding of printed electronics within 3D printed structures. In this work we apply a laser sintering method to create highly conductive silver features (50–125 cm) on top of and embedded within thermosensitive polymers printed by fused deposition modelling (FDM). We exploit this method to locally sinter silver inks deposited by direct ink writing (DIW) without external processing. Furthermore, we perform this while thermally preserving the 3D printed thermoplastic polyurethane (TPU) substrate which has a low glass transition temperature. By analyzing the effect of the process for both small and large shapes of conductive features, we show the importance of the transmitted power and sintering time. Lastly, we apply the developed method to produce flexible conductors and sensors. These include pressure and bending sensors that could find their way into cost-effective and customized soft electronic devices.