Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
The interaction with the various learners in a Massive Open Online Course (MOOC) is often complex. Contemporary MOOC learning analytics relate with click-streams, keystrokes and other user-input variables. Such variables however, do not always capture users' learning and behavior (e.g., passive video watching). In this paper, we present a study with 40 students who watched a MOOC lecture while their eye-movements were being recorded. We then proposed a method to define stimuli-based gaze variables that can be used for any kind of stimulus. The proposed stimuli-based gaze variables indicate students' content-coverage (in space and time) and reading processes (area of interest based variables) and attention (i.e., with-me-ness), at the perceptual (following teacher's deictic acts) and conceptual levels (following teacher discourse). In our experiment, we identified a significant mediation effect of the content coverage, reading patterns and the two levels of with-me-ness on the relation between students' motivation and their learning performance. Such variables enable common measurements for the different kind of stimuli present in distinct MOOCs. Our long-term goal is to create student profiles based on their performance and learning strategy using stimuli-based gaze variables and to provide students gaze-aware feedback to improve overall learning process. One key ingredient in the process of achieving a high level of adaptation in providing gaze-aware feedback to the students is to use Artificial Intelligence (AI) algorithms for prediction of student performance from their behaviour. In this contribution, we also present a method combining state-of-the-art AI technique with the eye-tracking data to predict student performance. The results show that the student performance can be predicted with an error of less than 5%.