Cooperative Multi-Robot Systems for Aquatic Environmental Sensing
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
For many real-life applications such as monitoring, mapping, search-and-rescue or ad-hoc communication networks, fleets of flying robots are expected to out-perform existing solutions. Robots can join forces to cover larger areas in less time, act as effic ...
We compare six different algorithms for localizing odor sources with mobile robots. Three algorithms are bio-inspired and mimic the behavior of insects when exposed to airborne pheromones. Two algorithms are based on probability and information theory, and ...
We study a distributed approach to path planning. We focus on holonomic kinematic motion in cluttered 2D areas. The problem consists in defining the precise sequence of roto-translations of a rigid object of arbitrary shape that has to be transported from ...
This paper presents a distributed multi-robot system to search for odor sources inside unknown environments. The robots cooperatively explore the whole environment and generate its topological map. The exploration method is a decentralized frontier based a ...
Swarms of robots can quickly search large environments through parallelisation, are robust due to redundancy, and can simplify complex tasks like navigation compared to a single robot. Flying swarms can rapidly cover rough terrain and have elevated sensing ...
We present a communication based navigation algorithm for robotic swarms. It lets robots guide each other's navigation by exchanging messages containing navigation information through the wireless network formed among the swarm. We study the use of this al ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2011
This paper addresses the problem of maintaining an autonomous robotic vehicle in a moving triangular formation by regulating its position with respect to two leader vehicles. The robotic vehicle has no a priori knowledge of the path described by the leader ...
This paper extends hierarchical task network (HTN) planning with lightweight learning, considering that in robotics, actions have a non-zero probability of failing. Our work applies to A*-based HTN planners with lifting. We prove that the planner finds the ...
One of the challenges with autonomous vehicles is their performance at intersections. An alternative control method for the coordination of autonomous vehicles at intersections is shown. The proposed approach was grounded in multiple-robot coordination and ...
Aerial swarms have the potential to search for forest fires, chemical plumes or victims and serve as communication and sensor networks in the sky. Flying robots are interesting for such applications because they are fast, can easily overcome difficult terr ...