Gradient-based Methods for Deep Model Interpretability
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Data augmentation is the process of generating samples by transforming training data, with the target of improving the accuracy and robustness of classifiers. In this paper, we propose a new automatic and adaptive algorithm for choosing the transformations ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of all this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of al1 this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
Perceptual learning has received enhanced interest during the last years both from theoreticians and experimentalists. Recent experimental results reveal that mechanisms underlying perceptual learning are more complex than previously expected, thereby ruli ...
Object segmentation requires both object-level information and low-level pixel data. This presents a challenge for feedforward networks: lower layers in convolutional nets capture rich spatial information, while upper layers encode object-level knowledge b ...
Recurrent neural networks based on reservoir computing are increasingly being used in many applications. Optimization of the topological structure of the reservoir and the internal connection weights for a given task is one of the most important problems i ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of all this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
École Polytechnique Fédérale de Lausanne, Computer Science Department2000
Restricted Boltzmann Machines (RBMs) are widely used as building blocks for deep learning models. Learning typically proceeds by using stochastic gradient descent, and the gradients are estimated with sampling methods. However, the gradient estimation is a ...
This paper introduces a set of algorithms for Monte-Carlo Bayesian reinforcement learning. Firstly, Monte-Carlo estimation of upper bounds on the Bayes-optimal value function is employed to construct an optimistic policy. Secondly, gradient-based algorithm ...
Deep learning presents notorious computational challenges. These challenges in- clude, but are not limited to, the non-convexity of learning objectives and estimat- ing the quantities needed for optimization algorithms, such as gradients. While we do not a ...