Carbon accountingCarbon accounting (or greenhouse gas accounting) is a framework of methods to measure and track how much greenhouse gas (GHG) an organization emits. It can also be used to track projects or actions to reduce emissions in sectors such as forestry or renewable energy. Corporations, cities and other groups use these techniques to help limit climate change. Organizations will often set an emissions baseline, create targets for reducing emissions, and track progress towards them.
AgrivoltaicsAgrivoltaics, agrophotovoltaics, agrisolar, or dual-use solar is the simultaneous use of areas of land for both solar panels and agriculture. Because solar panels and crops must share the sunlight, the design of agrivoltaic facilities may require trading off such objectives as optimizing crop yield, crop quality, and energy production. In some cases crop yield increases due to the shade of the solar panels mitigating some of the stress on plants caused by high temperatures and UV damage.
Greenhouse gas emissionsGreenhouse gas emissions (abbreviated as GHG emissions) from human activities strengthen the greenhouse effect, contributing to climate change. Carbon dioxide (), from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the US, although the United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies.
Life-cycle greenhouse gas emissions of energy sourcesGreenhouse gas emissions are one of the environmental impacts of electricity generation. Measurement of life-cycle greenhouse gas emissions involves calculating the global warming potential of energy sources through life-cycle assessment. These are usually sources of only electrical energy but sometimes sources of heat are evaluated. The findings are presented in units of global warming potential per unit of electrical energy generated by that source.
Embodied energyEmbodied energy is the sum of all the energy required to produce any goods or services, considered as if that energy was incorporated or 'embodied' in the product itself. The concept can be useful in determining the effectiveness of energy-producing or energy saving devices, or the "real" replacement cost of a building, and, because energy-inputs usually entail greenhouse gas emissions, in deciding whether a product contributes to or mitigates global warming.
Low-carbon dietA low-carbon diet is a diet with low greenhouse gas emissions. Choosing a low carbon diet is one facet of developing sustainable diets which increase the long-term sustainability of humanity. It is estimated that the food system is responsible for a quarter to a third of human-caused greenhouse gas emissions. Major tenets of a low-carbon diet include eating a plant-based diet, and in particular little or no beef and dairy. A 2014 study into the real-life diets of British people estimated their greenhouse gas footprints in terms of kilograms of carbon dioxide equivalent per day: 7.
Passive coolingPassive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption. This approach works either by preventing heat from entering the interior (heat gain prevention) or by removing heat from the building (natural cooling). Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components (e.g.
Photovoltaic mounting systemPhotovoltaic mounting systems (also called solar module racking) are used to fix solar panels on surfaces like roofs, building facades, or the ground. These mounting systems generally enable retrofitting of solar panels on roofs or as part of the structure of the building (called BIPV). As the relative costs of solar photovoltaic (PV) modules has dropped, the costs of the racks have become more important and for small PV systems can be the most expensive material cost. Due to these trends, there has been an explosion of new racking trends.
Emission intensityLife-cycle greenhouse gas emissions of energy sources An emission intensity (also carbon intensity or C.I.) is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP).
Carbon capture and storageCarbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the carbon dioxide stream that is to be captured can result from burning fossil fuels or biomass. Usually the CO2 is captured from large point sources, such as a chemical plant or biomass plant, and then stored in an underground geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change.