An implicit split-operator algorithm for the nonlinear time-dependent Schrödinger equation
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Aquatic ecologists have recently employed dynamic models to estimate aquatic ecosystem metabolism. All approaches involve numerically solving a differential equation describing dissolved oxygen (DO) dynamics. Although the DO differential equation can be so ...
Association for the Sciences of Limnology and Oceanography2016
We propose a multiscale method based on a finite element heterogeneous multiscale method (in space) and the implicit Euler integrator (in time) to solve nonlinear monotone parabolic problems with multiple scales due to spatial heterogeneities varying rapid ...
We propose a multiscale method based on a finite element heterogeneous multiscale method (in space) and the implicit Euler integrator (in time) to solve nonlinear monotone parabolic problems with multiple scales due to spatial heterogeneities varying rapid ...
To describe and simulate dynamic micromagnetic phenomena, we consider a coupled system of the non-linear Landau-Lifshitz-Gilbert equation and the conservation of momentum equation. This coupling allows one to include magnetostrictive effects into the simul ...
Exact nonadiabatic quantum evolution preserves many geometric properties of the molecular Hilbert space. In the first paper of this series ["Paper I," S. Choi and J. Vaníček, J. Chem. Phys. 150, 204112 (2019)], we presented numerical integrators of arbitra ...
High-order methods inspired by the multi-step Adams methods are proposed for systems of fractional differential equations. The schemes are based on an expansion in a weighted space. To obtain the schemes this expansion is terminated after terms. We study t ...
Finite elements methods (FEMs) with numerical integration play a central role in numerical homogenization methods for partial differential equations with multiple scales, as the effective data in a homogenization problem can only be recovered from a micros ...
This paper proposes an approach for high-order time integration within a multi-domain setting for time- fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to p ...
We introduce a new family of explicit integrators for stiff Ito stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from th ...
Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrat ...