Opening (morphology)In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B: where and denote erosion and dilation, respectively. Together with closing, the opening serves in computer vision and as a basic workhorse of morphological noise removal. Opening removes small objects from the foreground (usually taken as the bright pixels) of an image, placing them in the background, while closing removes small holes in the foreground, changing small islands of background into foreground.
Natural language processingNatural language processing (NLP) is an interdisciplinary subfield of linguistics and computer science. It is primarily concerned with processing natural language datasets, such as text corpora or speech corpora, using either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them.
Erosion (morphology)Erosion (usually represented by ⊖) is one of two fundamental operations (the other being dilation) in from which all other morphological operations are based. It was originally defined for s, later being extended to grayscale images, and subsequently to complete lattices. The erosion operation usually uses a structuring element for probing and reducing the shapes contained in the input image. In binary morphology, an image is viewed as a subset of a Euclidean space or the integer grid , for some dimension d.