Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper investigates the theory of robustness against adversarial attacks. We focus on randomized classifiers (i.e. classifiers that output random variables) and provide a thorough analysis of their behavior through the lens of statistical learning theo ...
Satellite remote sensing has become a key technology for monitoring Earth and the processes occurring at its surface. It relies on state-of-the-art machine learning models that require large annotated datasets to capture the extreme diversity of the proble ...
Deep neural networks have achieved impressive results in many image classification tasks. However, since their performance is usually measured in controlled settings, it is important to ensure that their decisions remain correct when deployed in noisy envi ...
Near-term quantum devices can be used to build quantum machine learning models, such as quantum kernel methods and quantum neural networks (QNN), to perform classification tasks. There have been many proposals on how to use variational quantum circuits as ...
The increasing prevalence of personal devices motivates the design of algorithms that can leverage their computing power, together with the data they generate, in order to build privacy-preserving and effective machine learning models. However, traditional ...
IEEE2022
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
The success of deep learning may be attributed in large part to remarkable growth in the size and complexity of deep neural networks. However, present learning systems raise significant efficiency concerns and privacy: (1) currently, training systems are l ...
EPFL2022
, , , , ,
Learning how to reach a reward over long series of actions is a remarkable capability of humans, and potentially guided by multiple parallel learning modules. Current brain imaging of learning modules is limited by (i) simple experimental paradigms, (ii) e ...
Learning to predict accurately from a few data samples is a central challenge in modern data-hungry machine learning. On natural images, human vision typically outperforms deep learning approaches on few-shot learning. However, we hypothesize that aerial a ...