Publication

Learning strategies and representations for intuitive robot learning from demonstration

Thibaut Antoine Kulak
2021
EPFL thesis
Abstract

Robots are becoming more and more present around us, both in industries and in our homes. One key capability of robots is their adaptability to various situations that might appear in the real world. Robot skill learning is therefore a crucial aspect of robotics aiming to provide robots with programs enabling them to perform one or several tasks successfully. While such programming is usually done by an engineer or a developer, making robot programming available to anyone would dramatically increase the range of applications currently feasible for robots. Learning from Demonstration (LfD) is a robot skill learning paradigm addressing this aim by developing intuitive frameworks for non-expert users to easily (re)program robots. While Learning from Demonstration has emerged as a successful way to program robots, several limitations remain to be addressed. Typical approaches still require some forms of preprocessing, such as the alignment of the demonstrations, or the choice of the movement representation. Also, the algorithms have to run with a relatively low number of demonstrations that human users are typically willing to give, while being performant, adaptable and generalizable to new situations. In this thesis, we propose to address these shortcomings with methods that make Learning from Demonstration more intuitive and user-friendly. We notably propose a novel movement representation requiring no demonstration alignment, and active learning strategies that permit to learn complex skills from fewer demonstrations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Industrial robot
An industrial robot is a robot system used for manufacturing. Industrial robots are automated, programmable and capable of movement on three or more axes. Typical applications of robots include welding, painting, assembly, disassembly, pick and place for printed circuit boards, packaging and labeling, palletizing, product inspection, and testing; all accomplished with high endurance, speed, and precision. They can assist in material handling.
Robot
A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics.
Show more
Related publications (54)

Language Learning using Caption Generation within Reciprocal Multi-Party Child-Tutor-Tutee Interaction

Barbara Bruno

Reciprocal Peer Tutoring (RPT) is a learning paradigm characteristic of collaborative interaction between learners with alternating tutortutee roles. In recent years, robot-assisted language learning (RALL) has gained traction by its wide application for l ...
ASSOC COMPUTING MACHINERY2023

Introducing Productive Engagement for Social Robots Supporting Learning

Jauwairia Nasir

We have all been one such student or seen such students who can maintain the 'good student' image while playing a video game under the table or those loyal backbenchers, seemingly always distracted, who then ace their exams. These intricacies of human beha ...
EPFL2022

Social/dialogical roles of social robots in supporting children's learning of language and literacy-A review and analysis of innovative roles

Barbara Bruno

One of the many purposes for which social robots are designed is education, and there have been many attempts to systematize their potential in this field. What these attempts have in common is the recognition that learning can be supported in a variety of ...
FRONTIERS MEDIA SA2022
Show more
Related MOOCs (18)
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.