Computer algebra systemA computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The development of the computer algebra systems in the second half of the 20th century is part of the discipline of "computer algebra" or "symbolic computation", which has spurred work in algorithms over mathematical objects such as polynomials.
Domain-specific modelingDomain-specific modeling (DSM) is a software engineering methodology for designing and developing systems, such as computer software. It involves systematic use of a domain-specific language to represent the various facets of a system. Domain-specific modeling languages tend to support higher-level abstractions than general-purpose modeling languages, so they require less effort and fewer low-level details to specify a given system.
Automatic vectorizationAutomatic vectorization, in parallel computing, is a special case of automatic parallelization, where a computer program is converted from a scalar implementation, which processes a single pair of operands at a time, to a vector implementation, which processes one operation on multiple pairs of operands at once. For example, modern conventional computers, including specialized supercomputers, typically have vector operations that simultaneously perform operations such as the following four additions (via SIMD or SPMD hardware): However, in most programming languages one typically writes loops that sequentially perform additions of many numbers.
Embarrassingly parallelIn parallel computing, an embarrassingly parallel workload or problem (also called embarrassingly parallelizable, perfectly parallel, delightfully parallel or pleasingly parallel) is one where little or no effort is needed to separate the problem into a number of parallel tasks. This is often the case where there is little or no dependency or need for communication between those parallel tasks, or for results between them. Thus, these are different from distributed computing problems that need communication between tasks, especially communication of intermediate results.
Message Passing InterfaceMessage Passing Interface (MPI) is a standardized and portable message-passing standard designed to function on parallel computing architectures. The MPI standard defines the syntax and semantics of library routines that are useful to a wide range of users writing portable message-passing programs in C, C++, and Fortran. There are several open-source MPI implementations, which fostered the development of a parallel software industry, and encouraged development of portable and scalable large-scale parallel applications.
Stream processingIn computer science, stream processing (also known as event stream processing, data stream processing, or distributed stream processing) is a programming paradigm which views streams, or sequences of events in time, as the central input and output objects of computation. Stream processing encompasses dataflow programming, reactive programming, and distributed data processing. Stream processing systems aim to expose parallel processing for data streams and rely on streaming algorithms for efficient implementation.
Maxima (software)Maxima (ˈmæksɪmə) is a computer algebra system (CAS) based on a 1982 version of Macsyma. It is written in Common Lisp and runs on all POSIX platforms such as macOS, Unix, BSD, and Linux, as well as under Microsoft Windows and Android. It is free software released under the terms of the GNU General Public License (GPL). Maxima is based on a 1982 version of Macsyma, which was developed at MIT with funding from the United States Department of Energy and other government agencies.
Source-to-source compilerA source-to-source translator, source-to-source compiler (S2S compiler), transcompiler, or transpiler is a type of translator that takes the source code of a program written in a programming language as its input and produces an equivalent source code in the same or a different programming language. A source-to-source translator converts between programming languages that operate at approximately the same level of abstraction, while a traditional compiler translates from a higher level programming language to a lower level programming language.
Metamorphic codeMetamorphic code is code that when run outputs a logically equivalent version of its own code under some interpretation. This is similar to a quine, except that a quine's source code is exactly equivalent to its own output. Metamorphic code also usually outputs machine code and not its own source code. Metamorphic code is used by computer viruses to avoid the pattern recognition of anti-virus software. Metamorphic viruses often translate their own binary code into a temporary representation, editing the temporary representation of themselves and then translate the edited form back to machine code again.
Manycore processorManycore processors are special kinds of multi-core processors designed for a high degree of parallel processing, containing numerous simpler, independent processor cores (from a few tens of cores to thousands or more). Manycore processors are used extensively in embedded computers and high-performance computing. Manycore processors are distinct from multi-core processors in being optimized from the outset for a higher degree of explicit parallelism, and for higher throughput (or lower power consumption) at the expense of latency and lower single-thread performance.