Adaptive Wireless Power Transfer and Backscatter Communication for Perpetual Operation of Wireless Brain-Computer Interfaces
Related publications (75)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), etc.) but with intact brain functions are somehow prisoners of their own body. They need alternative ways of communication and control to interact with th ...
People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), etc.) but with intact brain functions are somehow prisoners of their own body. They need alternative ways of communication and control to interact with th ...
Brains interfaced to machines, where thought is used to control and manipulate these machines. This is the vision examined in this chapter. First-generation brain-machine interfaces have already been developed, and technological developments must surely le ...
Brain-computer interface (BCI) systems allow the user to interact with a computer by merely thinking. Successful BCI operation depends on the continuous adaptation of the system to the user and on the user motivation. This paper presents a model of continu ...
The promise of Brain-Computer Interfaces (BCI) technology is to augment human capabilities by enabling interaction with computers through a conscious and spontaneous modulation of the brainwaves after a short training period. Indeed, by analyzing brain ele ...