Publication

Robustness, replicability and scalability in topic modelling

Orion B Penner
2022
Journal paper
Abstract

Approaches for estimating the similarity between individual publications are an area of long -standing interest in the scientometrics and informetrics communities. Traditional techniques have generally relied on references and other metadata, while text mining approaches based on title and abstract text have appeared more frequently in recent years. In principle, topic models have great potential in this domain. But, in practice, they are often difficult to employ successfully, and are notoriously inconsistent as latent space dimension grows. In this manuscript we identify the three properties all usable topic models should have: robustness, descriptive power and reflection of reality. We develop a novel method for evaluating the robustness of topic models and suggest a metric to assess and benchmark descriptive power as number of topics scale. Employing that procedure, we find that the neural-network-based paragraph embedding approach seems capable of providing statistically robust estimates of the document-document similarities, even for topic spaces far larger than what is usually considered prudent for the most common topic model approaches.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.