Publication

Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation

Abstract

DNA fragmentation is an essential process in developing genetic sequencing strategies, genetic research, as well as for the diagnosis of diseases with a genetic signature like cancer. Efficient on-chip DNA fragmentation protocols would be beneficial to process integration and open new opportunities for microfluidics in genetic applications. Here we present an acoustic microfluidic chip comprising an array of ultrasound-actuated microbubbles located at dedicated positions adjacent to a channel containing the DNA sample solution. The efficiency of the on-chip DNA fragmentation process arises mainly from tensile forces generated by acoustic streaming near the oscillating bubble interfaces, as well as a synergistic effect of streaming stress and ultrasonic cavitation. Acoustic microstreaming and the pressure distribution in the DNA channel were assessed by finite element simulation. We characterized the bubble-enhanced effect by measuring gene fragment size distributions with respect to different ultrasound parameters. For optimized on-chip conditions, purified lambda (lambda) DNA (48.5 kbp) could be disrupted to fragments with an average size of 2 kbp after 30 s and down to 300 bp after 90 s. Mouse genomic DNA (1.4 kbp) fragmentation size decreased to 500 bp in 30 s and reduced further to 250 bp in 90 s. Bubble-induced fragmentation was more than 3 times faster than without bubbles. On-chip performance and process yield were found to be comparable to a sophisticated high-end commercial system. In this view, our new bubble-enhanced microfluidic approach is a promising tool for current and next generation sequencing platforms with high efficiency and good capacity. Moreover, the availability of an efficient on-chip DNA fragmentation process opens perspectives for implementing full molecular protocols on a single microfluidic platform.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
DNA sequencing
DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery. Knowledge of DNA sequences has become indispensable for basic biological research, DNA Genographic Projects and in numerous applied fields such as medical diagnosis, biotechnology, forensic biology, virology and biological systematics.
Third-generation sequencing
Third-generation sequencing (also known as long-read sequencing) is a class of DNA sequencing methods currently under active development. Third generation sequencing technologies have the capability to produce substantially longer reads than second generation sequencing, also known as next-generation sequencing. Such an advantage has critical implications for both genome science and the study of biology in general. However, third generation sequencing data have much higher error rates than previous technologies, which can complicate downstream genome assembly and analysis of the resulting data.
Whole genome sequencing
Whole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. Whole genome sequencing has largely been used as a research tool, but was being introduced to clinics in 2014.
Show more
Related publications (73)

Multi-well plate lid for single-step pooling of 96 samples for high-throughput barcode-based sequencing

Bart Deplancke, Daniel Migliozzi, Gilles Weder, Riccardo Dainese, Daniel Alpern, Hüseyin Baris Atakan, Mustafa Demir, Dariia Gudkova

High-throughput transcriptomics is of increasing fundamental biological and clinical interest. The generation of molecular data from large collections of samples, such as biobanks and drug libraries, is boosting the development of new biomarkers and treatm ...
Dordrecht2024

Comparison of Three Viral Nucleic Acid Preamplification Pipelines for Sewage Viral Metagenomics

Tamar Kohn, Xavier Fernandez Cassi

Viral metagenomics is a useful tool for detecting multiple human viruses in urban sewage. However, more refined protocols are required for its effective use in disease surveillance. In this study, we investigated the performance of three different preampli ...
2024

Electronic readout of DNA amplification in nanoliter chambers. Strategies towards highly parallel semiconductor-based nucleic acid amplification testing.

Saurabh Tomar

Polymerase chain reaction (PCR) has been the most significant driver in the field of nucleic acid testing (NAT) since its invention. Popularized as an abbreviation by the Covid-19 pandemic, PCR-based methods are the gold standard in the field of diagnostic ...
EPFL2023
Show more
Related MOOCs (9)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.