An elementary treatment on the diffraction of crystalline structures
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In recent years quantum antiferromagnets with an intrinsically disordered (“spin liquid”) ground state and an energy gap in the spin excitation spectrum have received a great deal of attention. In search for new experimental realizations of spin-ladder and ...
One of the most crucial steps in the development of oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels is the engineering of their microstructure, which includes control of the type and size of oxide nanoparticles. In this work, t ...
Diffractionists usually place the birth of crystallography in 1912 with the first X-ray diffraction experiment of Friedrich, Knipping and Laue. This discovery propelled the mathematical branch of mineralogy to global importance and enabled crystal structur ...
We investigate the consequences of broken translational symmetry in the superconductor FeSexTe1-x using angle-resolved photoemission spectroscopy. We find that the intensity does not follow the periodicity dictated by the crystal structure, owing to the fo ...
Channeling in bent crystals is becoming a reliable and efficient technique for collimating beams. At CERN, the installation of crystals in LHC is under scrutiny by the UA9 collaboration with the goal of investigating if they are a viable option for the col ...
The discovery of aperiodic crystals is perhaps one of the most important event which has changed our vision on crystalline architectures since the discovery of diffraction 100 years ago. It was the merit of a Dutch crystallographer, P.M. de Wolff, to inter ...
One of the most crucial steps in the development of oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels is the engineering of their microstructure, which includes control of the type and size of oxide nanoparticles. In this work, ...
Diffractionists usually place the birth of crystallography in 1912 with the first X-ray diffraction experiment of Friedrich, Knipping and Laue. This discovery propelled the mathematical branch of mineralogy to global importance and enabled crystal structur ...
One of the most crucial steps in the development of oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels is the engineering of their microstructure, which includes control of the type and size of oxide nanoparticles. In this work, t ...
Diffractionists usually place the birth of crystallography in 1912 with the first X-ray diffraction experiment of Friedrich, Knipping and Laue. This discovery propelled the mathematical branch of mineralogy to global importance and enabled crystal structur ...