Publication

Machine learning the density functional theory potential energy surface for the inorganic halide perovskite CsPbBr3

Anirudh Raju Natarajan
2019
Journal paper
Abstract

The temperature and pressure dependence of structural phase transitions determine the structure-functionality relationships in many technologically important materials. Harmonic Hamiltonians have proven successful in predicting the vibrational properties of many materials. However, they are inadequate for modeling structural phase transitions in crystals with potential energy surfaces that are either strongly anharmonic or nonconvex with respect to collective atomic displacements or homogeneous strains. In this paper we develop a framework to express highly anharmonic first-principles potential energy surfaces as polynomials of collective cluster deformations. We further adapt the approach to a nonlinear extension of the cluster expansion formalism through the use of an artificial neural net model. The machine learning models are trained on a large database of first-principles calculations and are shown to reproduce the potential energy surface with low error.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.