Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Piezoelectrics are materials that linearly deform in response to an applied electric field. As a fundamental prerequisite, piezoelectric materials must have a noncentrosymmetric crystal structure. For more than a century, this has remained a major obstacle for finding piezoelectric materials. We circumvented this limitation by breaking the crystallographic symmetry and inducing large and sustainable piezoelectric effects in centrosymmetric materials by the electric field–induced rearrangement of oxygen vacancies. Our results show the generation of extraordinarily large piezoelectric responses [with piezoelectric strain coefficients (d33) of ~200,000 picometers per volt at millihertz frequencies] in cubic fluorite gadolinium-doped CeO2−x films, which are two orders of magnitude larger than the responses observed in the presently best-known lead-based piezoelectric relaxor–ferroelectric oxide at kilohertz frequencies. These findings provide opportunities to design piezoelectric materials from environmentally friendly centrosymmetric ones.
Mike Seidel, Paolo Craievich, Sven Reiche, Anastasiya Magazinik