Publication

Engineering spinal cord repair

Abstract

Neurological damage caused by spinal cord injury in humans has been observed for over three thousand years and impacts the lives of several hundred thousand people worldwide. Despite this prevalence and its associated consequences, there is no treatment to repair the injured spinal cord. Evidence gathered over the last several decades has provided mechanistic information on the complex cascade of events following traumatic spinal cord injury and this is paving the way towards mechanism based repair strategies. In this review, we summarize state-of-the-art biological and engineering repair strategies and posit that complete repair will be dependent on cataloguing the molecular signatures and growth requirements of the different neuron subpopulations in the brain and spinal cord.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.