**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# On Generalizations of Some Distance Based Classifiers for HDLSS Data

Abstract

In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and they often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting in improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. High-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of benchmark data sets from three different databases exhibit advantages of the proposed methods.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (12)

Related publications (2)

Dimension

In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a d

Euclidean distance

In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.
It can be calculated from the Cartesian coordinates of the points

Sample size determination

Sample size determination is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which th

Loading

Loading

Popular clustering algorithms based on usual distance functions (e.g., the Euclidean distance) often suffer in high dimension, low sample size (HDLSS) situations, where concentration of pairwise distances and violation of neighborhood structure have adverse effects on their performance. In this article, we use a new data-driven dissimilarity measure, called MADD, which takes care of these problems. MADD uses the distance concentration phenomenon to its advantage, and as a result, clustering algorithms based on MADD usually perform well for high dimensional data. We establish it using theoretical as well as numerical studies. We also address the problem of estimating the number of clusters. This is a challenging problem in cluster analysis, and several algorithms are available for it. We show that many of these existing algorithms have superior performance in high dimensions when they are constructed using MADD. We also construct a new estimator based on a penalized version of the Dunn index and prove its consistency in the HDLSS asymptotic regime. Several simulated and real data sets are analyzed to demonstrate the usefulness of MADD for cluster analysis of high dimensional data.

Testing for equality of two high-dimensional distributions is a challenging problem, and this becomes even more challenging when the sample size is small. Over the last few decades, several graph-based two-sample tests have been proposed in the literature, which can be used for data of arbitrary dimensions. Most of these test statistics are computed using pairwise Euclidean distances among the observations. But, due to concentration of pairwise Euclidean distances, these tests have poor performance in many high-dimensional problems. Some of them can have powers even below the nominal level when the scale-difference between two distributions dominates the location-difference. To overcome these limitations, we introduce some new dissimilarity indices and use them to modify some popular graph-based tests. These modified tests use the distance concentration phenomenon to their advantage, and as a result, they outperform the corresponding tests based on the Euclidean distance in a wide variety of examples. We establish the high-dimensional consistency of these modified tests under fairly general conditions. Analyzing several simulated as well as real data sets, we demonstrate their usefulness in high dimension, low sample size situations.