Emission intensityLife-cycle greenhouse gas emissions of energy sources An emission intensity (also carbon intensity or C.I.) is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP).
ScatteringScattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection.
VisibilityThe visibility is the measure of the distance at which an object or light can be clearly discerned. In meteorology it depends on the transparency of the surrounding air and as such, it is unchanging no matter the ambient light level or time of day. It is reported within surface weather observations and METAR code either in meters or statute miles, depending upon the country. Visibility affects all forms of traffic: roads, railways, sailing and aviation.
Deforestation and climate changeDeforestation is a primary contributor to climate change, and climate change affects forests. Land use changes, especially in the form of deforestation, are the second largest anthropogenic source of atmospheric carbon dioxide emissions, after fossil fuel combustion. Greenhouse gases are emitted during combustion of forest biomass and decomposition of remaining plant material and soil carbon. Global models and national greenhouse gas inventories give similar results for deforestation emissions.
Hapke parametersThe Hapke parameters are a set of parameters for an empirical model that is commonly used to describe the directional reflectance properties of the airless regolith surfaces of bodies in the Solar System. The model has been developed by astronomer Bruce Hapke at the University of Pittsburgh. The parameters are: — Single scattering albedo. This is the ratio of scattering efficiency to total light extinction (which includes also absorption), for small-particle scattering of light.