Publication

How to improve the efficiency of a traditional dissolution dynamic nuclear polarization (dDNP) apparatus: Design and performance of a fluid path compatible dDNP/LOD-ESR probe

Abstract

Dissolution Dynamic Nuclear Polarization (dDNP) was invented almost twenty years ago. Ever since, hardware advancement has observed 2 trends: the quest for DNP at higher field and, more recently, the development of cryogen free polarizers. Despite the DNP community is slowly migrating towards “dry” systems, many “wet” polarizers are still in use. Traditional DNP polarizers can use up to 100 L of liquid helium per week, but are less sensitive to air contamination and have higher cooling power. These two characteristics make them very versatile when it comes to new methods development. In this study we retrofitted a 5 T/1.15 K “wet” DNP polarizer with the aim of improving cryogenic and DNP performance. We designed, built, and tested a new DNP insert that is compatible with the fluid path (FP) technology and a LOgitudinal Detected Electron Spin Resonance (LOD-ESR) probe to investigate radical properties at real DNP conditions. The new hardware increased the maximum achievable polarization and the polarization rate constant of a [1-13C]pyruvic acid-trityl sample by a factor 1.5. Moreover, the increased liquid He holding time together with the possibility to constantly keep the sample space at low pressure upon sample loading and dissolution allowed us to save about 20 L of liquid He per week.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.