Publication

A 192 nW 0.02 Hz High Pass Corner Acoustic Analog Front-End with Automatic Saturation Detection and Recovery

Kyojin Choo
2021
Conference paper
Abstract

We present an acoustic analog front-end with a 100TΩ feedback resistance that is robust to PT variation (1.8× deviation across –40 to 80°C and 0.035× σ/µ across 16 measured samples) and achieves a 3.3× reduction in input referred noise (IRN). It eliminates an input frequency and phase dependent systematic offset introduced by a similar previous technique [5] and introduces automatic saturation detection and feedback resistance modulation for fast amplifier restabilization, yielding 10× improvement in artifact recovery time. The technique was implemented in a 192 nW LNA + PGA + ADC chain.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (23)
Noise figure
Noise figure (NF) and noise factor (F) are figures of merit that indicate degradation of the signal-to-noise ratio (SNR) that is caused by components in a signal chain. These figures of merit are used to evaluate the performance of an amplifier or a radio receiver, with lower values indicating better performance. The noise factor is defined as the ratio of the output noise power of a device to the portion thereof attributable to thermal noise in the input termination at standard noise temperature T0 (usually 290 K).
Signal-to-noise ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR is an important parameter that affects the performance and quality of systems that process or transmit signals, such as communication systems, audio systems, radar systems, imaging systems, and data acquisition systems.
Frequency response
In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. The frequency response is widely used in the design and analysis of systems, such as audio and control systems, where they simplify mathematical analysis by converting governing differential equations into algebraic equations.
Show more
Related publications (34)

Does powder averaging remove dispersion bias in diffusion MRI diameter estimates within real 3D axonal architectures?

Marco Pizzolato, Tim Bjørn Dyrby

Noninvasive estimation of axon diameter with diffusion MRI holds the potential to investigate the dynamic properties of the brain network and pathology of neurodegenerative diseases. Recent studies use powder averaging to account for complex white matter a ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022

Reference Oversampling PLL Achieving −256-dB FoM and −78-dBc Reference Spur

Kyojin Choo

This article presents a low jitter, low power, low reference spur LC oscillator-based reference oversampling digital phase locked loop (OSPLL). The proposed reference oversampling architecture simultaneously offers a low in-band phase noise, a wide-bandwid ...
IEEE2021

Low-Power and Wide-Tuning Range Frequency Generation for FMCW Radars in Advanced CMOS Technologies

Francesco Chicco

Nowadays, the internet of things (IoT) nodes have started to spread in various domains of our society, from the industrial to the domestic environment. The remote sensing is one among their fundamental functions. The implementation of a radio detection and ...
EPFL2021
Show more
Related MOOCs (6)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.