Publication

WR2A: A Very-Wide-Register Reconfigurable-Array Architecture for Low-Power Embedded Devices

Abstract

Edge-computing requires high-performance energy-efficient embedded systems. Fixed-function or custom accelerators, such as FFT or FIR filter engines, are very efficient at implementing a particular functionality for a given set of constraints. However, they are inflexible when facing application-wide optimizations or functionality upgrades. Conversely, programmable cores offer higher flexibility, but often with a penalty in area, performance, and, above all, energy consumption. In this paper, we propose VWR2A, an architecture that integrates high computational density and low power memory structures (i.e., very-wide registers and scratchpad memories). VWR2A narrows the energy gap with similar or better performance on FFT kernels with respect to an FFT accelerator. Moreover, VWR2A flexibility allows to accelerate multiple kernels, resulting in significant energy savings at the application level.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.