Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
EPFL2023
The way biological brains carry out advanced yet extremely energy efficient signal processing remains both fascinating and unintelligible. It is known however that at least some areas of the brain perform fast and low-cost processing relying only on a smal ...
EPFL2023
, ,
Epilepsy is one of the most common neurological disorders that is characterized by recurrent and unpredictable seizures. Wearable systems can be used to detect the onset of a seizure and notify family members and emergency units for rescue. The majority of ...
2023
Curvilinear structures are frequently observed in a variety of domains and are essential for comprehending neural circuits, detecting fractures in materials, and determining road and irrigation canal networks. It can be costly and time-consuming to manuall ...
End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...
The monumental progress in the development of machine learning models has led to a plethora of applications with transformative effects in engineering and science. This has also turned the attention of the research community towards the pursuit of construc ...
Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, ca ...
Measuring bathymetry has always been a major scientific and technological challenge. In this work, we used a deep learning technique for inferring bathymetry from the depth-averaged velocity field. The training of the neural network is based on 5742 labora ...
Training accurate and robust machine learning models requires a large amount of data that is usually scattered across data silos. Sharing, transferring, and centralizing the data from silos, however, is difficult due to current privacy regulations (e.g., H ...
Bowers et al. argue that deep neural networks (DNNs) are poor models of biological vision because they often learn to rival human accuracy by relying on strategies that differ markedly from those of humans. We show that this problem is worsening as DNNs ar ...