Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Species declines due to changing environmental conditions or anthropogenic influences such as fisheries harvest as well as species introductions probably have consequences beyond the species by also altering their food webs. The scope of the effect on the ...
Small-scale hydraulics affects microbial behaviour at the cell level1, trophic interactions in marine aggregates2 and the physical structure and function of stream biofilms3,4. However, it remains unclear how hydraulics, predictably changing from small str ...
The rapid proliferation of silver nanoparticles (AgNP) in industry and the environment requires realistic toxicity assessments based on approaches that consider the biological complexity of ecosystems. Here we assessed the acute toxicity of carbonate-coate ...
Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycl ...
Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light in ...
Microorganisms aggregated into matrix-enclosed biofilms dominate microbial life in most natural, engineered, and medical systems. Despite this, the ecological adaptations and metabolic trade-offs of the formation of complex biofilms are currently poorly un ...
With the global nanotechnology market growing rapidly, nanomaterials are being increasingly released into aquatic environments, where they can undergo modifications and sedimentation, which will put benthic organisms at risk. Of particular interest is the ...
When introduced into the aquatic environment, TiO2 NP are likely to settle from the water column, which results in increased exposure of benthic communities. Here, we show that the activity of two extracellular enzymes of intact heterotrophic biofilms, bet ...
In a set of streamside mesocosms, stream ecosystem respiration (ER) increased with biofilm biomass and flow heterogeneity (turbulence) generated by impermeable bed forms, even though those bed forms had no hyporheic exchange. Two streamside flumes with gra ...
Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribut ...