Elucidating the Rate-Limiting Processes in High-Temperature Sodium-Metal Chloride Batteries
Related publications (48)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Iridium dioxide electrodes form part of the dimensionally stable anodes (DSA®) and this electrode material is widely used in many industrial processes namely water electrolysis, metal electro-winning, cathodic protection and electro-organic synthesis due t ...
This paper discusses two charge storage systems that exploit the unique properties of block copolymer template nanoporous materials. The first case focuses on electrochem. supercapacitors produced by polymer templating of both sol-gel type and nanocrystal ...
This paper reports on the fabrication and experimental characterisation of improved design AC eletroosmotic micropumps. Since the first study and analysis of AC electroosmosis by Ramos et al. [1], many devices have been fabricated and tested [2]. The basic ...
Self-assembled monolayers (SAMs) of redox-active molecules on mesoscopic substrates exhibit two-dimensional conductivity if their surface coverage exceeds the percolation threshold. Here, we show for the first time that such molecular charge transport laye ...
By introducing a coupling between internal stresses and activation energy for diffusion in the classical theory of diffusion induced stresses, a class of nonconventional solutions has been found for atomic intercalation into a solid electrode, indicative o ...
Solid state diffusion is a very complex mechanism and, up until recent studies, such properties had mainly been conducted by macroscopic methods that do not yield true material properties. This has been a major problem for materials development regarding e ...
The poor electronic conductivity of LiFePO4 has been one of the major issues impeding it from achieving high power and energy density lithium-ion batteries. In this communication, a novel polymer-wiring concept was proposed to improve the conduction of the ...
We review herein several important aspects of surface chemistry in Li-ion batteries, and discuss the use of ionic liquids (ILs) for rechargeable Li batteries. We explored the suitability of ILs for 5 V cathodes and Li-graphite anodes. Some advantages of th ...
LiMnPO4 nanoparticles synthesized by the polyol method were examined as a cathode material for advanced Li-ion batteries. The structure, surface morphology, and performance were characterized by X-ray diffraction, high resolution scanning electron microsco ...
The conventional strategy of overcharge protection for lithium ion batteries uses redox molecules having oxidation potential higher than the cathodic materials in the electrolyte. Here we propose a novel approach by using redox molecules having reduction p ...