Variational methods for finding periodic orbits in the incompressible Navier Stokes equations
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...
This work is devoted to the study of the main models which describe the motion of incompressible fluids, namely the Navier-Stokes, together with their hypodissipative version, and the Euler equations. We will mainly focus on the analysis of non-smooth weak ...
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the func ...
In this paper, we investigate the haemodynamics of a left atrium (LA) by proposing a computational model suitable to provide physically meaningful fluid dynamics indications and detailed blood flow characterization. In particular, we consider the incompres ...
The analysis in Part I [1] revealed interesting properties for subgradient learning algorithms in the context of stochastic optimization. These algorithms are used when the risk functions are non-smooth or involve non-differentiable components. They have b ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
We introduce a two-level preconditioner for the efficient solution of large scale saddle point linear systems arising from the finite element (FE) discretization of parametrized Stokes equations. This preconditioner extends the Multi Space Reduced Basis (M ...
A boundary-fitted moving mesh scheme is presented for the simulation of two-phase flow in two-dimensional and axisymmetric geometries. The incompressible Navier-Stokes equations are solved using the finite element method, and the mini element is used to sa ...
The multiquery solution of parametric partial differential equations (PDEs), that is, PDEs depending on a vector of parameters, is computationally challenging and appears in several engineering contexts, such as PDE-constrained optimization, uncertainty qu ...
In this work we introduce a two-level preconditioner for the efficient solution of large scale saddlepoint linear systems arising from the finite element (FE) discretization of parametrized Stokes equations.The proposed preconditioner extends the Multi Spa ...