**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# A Revisitation of Low-Rate Bounds on the Reliability Function of Discrete Memoryless Channels for List Decoding

Abstract

We revise the proof of low-rate upper bounds on the reliability function of discrete memoryless channels for ordinary and list-decoding schemes, in particular Berlekamp and Blinovsky's zero-rate bound, as well as Blahut's bound for low rates. The available proofs of the zero-rate bound devised by Berlekamp and Blinovsky are somehow complicated in that they contain in one form or another some "non-standard" procedures or computations. Here we follow Blinovsky's idea of using a Ramsey-theoretic result by Komlos, and we complement it with some missing steps to present a proof which is rigorous and easier to inspect. Furthermore, we show how these techniques can be used to fix an error that invalidated the proof of Blahut's low-rate bound, which is here presented in an extended form for list decoding and for general channels.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (32)

Related concepts (32)

Chernoff bound

In probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function. The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential (e.g. sub-Gaussian). It is especially useful for sums of independent random variables, such as sums of Bernoulli random variables. The bound is commonly named after Herman Chernoff who described the method in a 1952 paper, though Chernoff himself attributed it to Herman Rubin.

Decoding methods

In coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords. These are often used to recover messages sent over a noisy channel, such as a binary symmetric channel. is considered a binary code with the length ; shall be elements of ; and is the distance between those elements. One may be given the message , then ideal observer decoding generates the codeword .

Noisy-channel coding theorem

In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel. This result was presented by Claude Shannon in 1948 and was based in part on earlier work and ideas of Harry Nyquist and Ralph Hartley.

Random codes based on quasigroups (RCBQ) are cryptcodes, i.e. they are error-correcting codes, which provide information security. Cut-Decoding and 4-Sets-Cut-Decoding algorithms for these codes are defined elsewhere. Also, the performance of these codes f ...

2019The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...

,

We propose a new class of efficient decoding algorithms for Reed-Muller (RM) codes over binary-input memoryless channels. The algorithms are based on projecting the code on its cosets, recursively decoding the projected codes (which are lower-order RM code ...