Publication

On the robustness of the metric dimension of grid graphs to adding a single edge

Abstract

The metric dimension (MD) of a graph is a combinatorial notion capturing the minimum number of landmark nodes needed to distinguish every pair of nodes in the graph based on graph distance. We study how much the MD can increase if we add a single edge to the graph. The extra edge can either be selected adversarially, in which case we are interested in the largest possible value that the MD can take, or uniformly at random, in which case we are interested in the distribution of the MD. The adversarial setting has already been studied by [Eroh et. al., 2015] for general graphs, who found an example where the MD doubles on adding a single edge. By constructing a different example, we show that this increase can be as large as exponential. However, we believe that such a large increase can occur only in specially constructed graphs, and that in most interesting graph families, the MD at most doubles on adding a single edge. We prove this for dd-dimensional grid graphs, by showing that 2d2d appropriately chosen corners and the endpoints of the extra edge can distinguish every pair of nodes, no matter where the edge is added. For the special case of d=2d=2, we show that it suffices to choose the four corners as landmarks. Finally, when the extra edge is sampled uniformly at random, we conjecture that the MD of 2-dimensional grids converges in probability to 3+Ber(8/27)3+\mathrm{Ber}(8/27), and we give an almost complete proof.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.