Leveraging topology, geometry, and symmetries for efficient Machine Learning
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
We present a statistical framework to benchmark the performance of reconstruction algorithms for linear inverse problems, in particular, neural-network-based methods that require large quantities of training data. We generate synthetic signals as realizati ...
The monumental progress in the development of machine learning models has led to a plethora of applications with transformative effects in engineering and science. This has also turned the attention of the research community towards the pursuit of construc ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
The recent developments of deep learning cover a wide variety of tasks such as image classification, text translation, playing go, and folding proteins.All these successful methods depend on a gradient-based learning algorithm to train a model on massive a ...
The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator L\documentclass[12pt]{ ...
The high computational costs of deep convolutional neural networks hinder their deployment in real-world applications, including pulmonary nodule detection from CT scans where large 3D image sizes amplify the issue. This paper presents a novel 3D method to ...
Integrating functions on discrete domains into neural networks is key to developing their capability to reason about discrete objects. But, discrete domains are (I) not naturally amenable to gradient-based optimization, and (II) incompatible with deep lear ...
Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales ...
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have been widely used and have achieved tremendous success in visual recognition. Unfortunately, deploying deep models is challenging because of their huge model s ...