Publication

Multi-antenna 3D pattern design for millimeter-wave vehicular communications

2022
Journal paper
Abstract

The transformation of the automotive industry towards ubiquitous connection of vehicles with all kind of external agents (V2X) motivates the use of a wide range of frequencies for several applications. Millimeter-wave (mmWave) connectivity represents a paramount research field in which adequate geometries of antenna arrays must be provided to be integrated in modern vehicles, so 5G-V2X can be fully exploited in the Frequency Range 2 (FR2) band. This paper presents an approach to design mmWave vehicular multi-antenna systems with beamforming capabilities considering the practical limitations of their usage in real vehicular environments. The study considers both the influence of the vehicle itself at radiation pattern level and the impact of the urban traffic on physical layer parameters. Connectivity parameters such as Signal-to-Interference-plus-Noise Ratio (SINR) and outage probability are optimized based on the array topology. A shaped beam in the vertical plane based on three preset radiating elements is proven to be robust enough against self-scattering effects on the vehicle body. Regarding the horizontal geometry, four panels on the roof's edges provide good coverage and link quality. The number of horizontal antennas per panel tightly depends on the required values of the link quality metrics, potentially leading to a non-uniform geometry between sides and front or back panels. (C)& nbsp;2022 The Author(s). Published by Elsevier Inc.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.