First-Principles Density Limit Scaling in Tokamaks Based on Edge Turbulent Transport and Implications for ITER
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. ...
Almost since the first density profile measurements were made in the scrape-off layer (SOL) of the early tokamaks, it has been recognized that the rate of particle transport perpendicular to magnetic surfaces exceeds that expected on the basis of classical ...
The transport of particles in magnetically confined plasmas is of great importance for the development of fusion energy. It will determine techniques for fuelling, for controlling impurity concentrations and for the removal of the alpha particles produced ...
The current density in tokamak plasmas strongly affects transport phenomena, therefore its understanding and control represent a crucial challenge for controlled thermonuclear fusion. Within the vast framework of tokamak studies, three topics have been tac ...
The Tokamak concept, based on magnetic confinement of a hydrogen plasma, is one of today's most promising paths to energy production by nuclear fusion. The experimental scenarios leading to the largest fusion rate are based on a high confinement plasma reg ...
Electron cyclotron resonance heating (ECRH) of high-density tokamak plasmas is limited because of reflections of the waves at so-called wave cutoffs. Electron Bernstein wave (EBW) heating (EBWH) via a double mode conversion process from ordinary (O)-mode, ...
Ohmic H-mode discharges in the Tokamak Configuration Variable (TCV) have recently been heated for the first time by electron cyclotron (EC) waves at the 3rd harmonic (X3) at full power. New edge localized mode (ELM) behaviour has been found, with larger am ...
The Tokamak à Configuration Variable (TCV) programme is based on flexible plasma shaping capabilities together with a powerful electron cyclotron wave (ECW) additional heating for studies of stability, confinement, transport, control and power exhaust. In ...
Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present the ...
Energy confinement and heat transport of net-current-free NBI heated plasmas in the large helical device (LHD) are discussed with emphasis on density and power deposition profile dependences. Although the apparent density dependence of the energy confineme ...