Ordered logitIn statistics, the ordered logit model (also ordered logistic regression or proportional odds model) is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. For example, if one question on a survey is to be answered by a choice among "poor", "fair", "good", "very good" and "excellent", and the purpose of the analysis is to see how well that response can be predicted by the responses to other questions, some of which may be quantitative, then ordered logistic regression may be used.
Clinical trialClinical trials are prospective biomedical or behavioral research studies on human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel vaccines, drugs, dietary choices, dietary supplements, and medical devices) and known interventions that warrant further study and comparison. Clinical trials generate data on dosage, safety and efficacy. They are conducted only after they have received health authority/ethics committee approval in the country where approval of the therapy is sought.
Primary tumorA primary tumor is a tumor growing at the anatomical site where tumor progression began and proceeded to yield a cancerous mass. Most solid cancers develop at their primary site but may then go on to metastasize or spread to other parts of the body. These further tumors are secondary tumors. Most cancers continue to be called after their primary site, as in breast cancer or lung cancer for example, even after they have spread to other parts of the body.
Binomial regressionIn statistics, binomial regression is a regression analysis technique in which the response (often referred to as Y) has a binomial distribution: it is the number of successes in a series of n independent Bernoulli trials, where each trial has probability of success p. In binomial regression, the probability of a success is related to explanatory variables: the corresponding concept in ordinary regression is to relate the mean value of the unobserved response to explanatory variables.
Pancreatic neuroendocrine tumorPancreatic neuroendocrine tumours (PanNETs, PETs, or PNETs), often referred to as "islet cell tumours", or "pancreatic endocrine tumours" are neuroendocrine neoplasms that arise from cells of the endocrine (hormonal) and nervous system within the pancreas. PanNETs are a type of neuroendocrine tumor, representing about one-third of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Many PanNETs are benign, while some are malignant. Aggressive PanNET tumors have traditionally been termed "islet cell carcinoma".
Logistic functionA logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with the equation where For values of in the domain of real numbers from to , the S-curve shown on the right is obtained, with the graph of approaching as approaches and approaching zero as approaches . The logistic function finds applications in a range of fields, including biology (especially ecology), biomathematics, chemistry, demography, economics, geoscience, mathematical psychology, probability, sociology, political science, linguistics, statistics, and artificial neural networks.
Cohort studyA cohort study is a particular form of longitudinal study that samples a cohort (a group of people who share a defining characteristic, typically those who experienced a common event in a selected period, such as birth or graduation), performing a cross-section at intervals through time. It is a type of panel study where the individuals in the panel share a common characteristic.
Observational errorObservational error (or measurement error) is the difference between a measured value of a quantity and its true value. In statistics, an error is not necessarily a "mistake". Variability is an inherent part of the results of measurements and of the measurement process. Measurement errors can be divided into two components: random and systematic. Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken.
Statistical hypothesis testingA statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters. While hypothesis testing was popularized early in the 20th century, early forms were used in the 1700s. The first use is credited to John Arbuthnot (1710), followed by Pierre-Simon Laplace (1770s), in analyzing the human sex ratio at birth; see .
OddsIn probability theory, odds provide a measure of the likelihood of a particular outcome. They are calculated as the ratio of the number of events that produce that outcome to the number that do not. Odds are commonly used in gambling and statistics. Odds also have a simple relation with probability: the odds of an outcome are the ratio of the probability that the outcome occurs to the probability that the outcome does not occur. In mathematical terms, where p is the probability of the outcome: where 1 – p is the probability that the outcome does not occur.