Advances in Magnetics Roadmap on Spin-Wave Computing
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic(1) and quantum computing(2) devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics(3,4) and electrical spin manipulat ...
The excitation of spin waves by a microwave current injected into a coplanar waveguide with finite-width ground lines on a continuous Permalloy film is investigated both experimentally and numerically. Phase sensitive micro-focused Brillouin light scatteri ...
Spin caloritronics, i.e., the addition of thermal effects to the electrical and magnetic properties of nanostructures, has recently seen a rapid development. It has been predicted that a heat current can exert a spin torque on the magnetization in a nanost ...
Low-temperature solution-processed organic-inorganic halide perovskite CH3NH3PbI3 has demonstrated great potential for photovoltaics and light-emitting devices. Recent discoveries of long ambipolar carrier diffusion lengths and the prediction of the Rashba ...
Spin wave transmission experiments are performed on a one-dimensional magnonic crystal (MC) where an injection pad for domain walls reverses the magnetization M of selected nanostripes independently from the otherwise saturated MC. The MC consists of a per ...
In this thesis we make use of the Spin Transfer Torque effect from a continuous microwave current to induce and study the spin dynamics of an individual sub-100 nm nanostructure. The idea that an electrical current can carry a spin angular momentum was int ...
We developed a non-lithographic technique to contact sub-100 nm nanowires for spin transfer torque experiments. Co/Cu multilayers were grown by electrodeposition in nanoporous commercial polycarbonate membranes from a Co/Cu bath. A home-made sample holder ...
The application of an external magnetic field can lift the spin degeneracy of electronic states through its interaction with the electronic magnetic moment. A closely-related phenomenon is the Rashba-Bychkov (RB) effect where symmetry breaking at surfaces ...
A microwave-compatible lithography-free process is shown to allow the electrical contact of a single nanometric spin valve grown by template synthesis. The complex spin dynamics of a single nanomagnet is revealed by resonant microwave current excitations, ...
The emerging field of spintronics explores the many possibilities offered by the prospect of using the spin of the electrons for fast, nanosized electronic devices. The effect of magnetization acting on a current is the essence of giant or tunnel magnetore ...