Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Many-body open quantum systems are exposed to an essentially uncontrollable environment that acts as a source of decoherence and dissipation. As the exact treatment of such models is generally unfeasible, it is favourable to formulate an approximate descri ...
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
This thesis is devoted to the investigation of static and dynamic properties of
two different sets of quantum magnets with neutron scattering techniques and
the help of linear spin wave theory.
Both systems are copper-based with spin-1/2, which makes them ...
A quantum computer fundamentally comprises a quantum processor and a classical controller. The classical electronic controller is used to correct and manipulate the qubits, the core components of a quantum processor. To enable quantum computers scalable to ...
Atomistic simulations are a bottom up approach that predict properties
of materials by modelling the quantum mechanical behaviour of all electrons
and nuclei present in a system. These simulations, however, routinely assume
nuclei to be classical particles ...
A primary challenge in quantum science and technology is to isolate the fragile quantum states from their environment in order to prevent the irreversible leakage of energy and information which causes decoherence. In the late 1990s, however, a new paradig ...
Mechanical oscillators are among the most important scientific tools in the modern physics. From the pioneering experiments in 18th by founding fathers of modern physics such as Newton, Hooke and Cavendish to the ground braking experiments in the 21th cent ...
The possibility to simulate the properties of many-body open quantum systems with a large number of degrees of freedom (d.o.f.) is the premise to the solution of several outstanding problems in quantum science and quantum information. The challenge posed b ...
We develop a real-time full configuration-interaction quantum Monte Carlo approach to model driven-dissipative open quantum systems with Markovian system-bath coupling. The method enables stochastic sampling of the Liouville–von Neumann time evolution of t ...
Isolation of a system from its environment is often desirable, from precision measurements to control of individual quantum systems; however, dissipation can also be a useful resource. Remarkably, engineered dissipation enables the preparation of quantum s ...