Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Transport of coarse particulate organic matter (CPOM) derived from forest litterfall has been hardly studied in rivers, unlike fine particulate organic matter (FPOM) or dissolved organic matter (DOM). Yet, many rivers are dammed or run into lakes, and there is growing evidence that CPOM accumulation in river delta participates substantially in ecological processes such as greenhouse gas emissions of lakes and reservoirs. We investigated the transport of CPOM and FPOM by the Leysse River (discharge from 0.2 to 106 m(3) s(-1)) to Lake Bourget (France) in relation to aerial litter deposition, river network length, and discharge. Over a 19-month study period, the volume-weighted mean CPOM and FPOM concentrations were 1.3 and 7.7 g m(-3,) respectively. Most CPOM and FPOM transport occurred during major flood events, and there were power relationships between maximum discharge and particulate organic matter (POM) transport during these events. The annual export of CPOM (190 t AFDM) was 85% of the litter accumulation in autumn on permanent sections of the riverbed (224 t AFDM), which suggests that export is a major process compared to breakdown. Export of CPOM was 1.25 t yr(-1) km(-2) of the forested catchment area. This study highlights the need to account for long-range CPOM transport to describe the fate of litter inputs to streams and to quantify the organic matter input and processing in lakes and reservoirs.
Devis Tuia, Julia Schmale, Nora Bergner, Ianina Altshuler, Gaston Jean Lenczner, Grace Emma Marsh
Tom Ian Battin, Enrico Bertuzzo, Luis Gómez Gener