Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of the ...
Representing and reconstructing 3D deformable shapes are two tightly linked problems that have long been studied within the computer vision field. Deformable shapes are truly ubiquitous in the real world, whether be it specific object classes such as human ...
To predict the response of masonry buildings to various types of loads, engineers use finite element models, specifically solid-element and macro-element models. For predicting masonry responses to seismic events in particular, equivalent frame models-a su ...
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
In recent years, there has been a significant revolution in the field of deep learning, which has demonstrated its effectiveness in automatically capturing intricate patterns from large datasets. However, the majority of these successes in Computer Vision ...
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Recent advancements in deep learning have revolutionized 3D computer vision, enabling the extraction of intricate 3D information from 2D images and video sequences. This thesis explores the application of deep learning in three crucial challenges of 3D com ...
There are many approaches to weakly-supervised training of networks to segment 2D images. By contrast, existing approaches to segmenting volumetric images rely on full-supervision of a subset of 2D slices of the 3D volume. We propose an approach to volume ...
Large training datasets have played a vital role in the success of modern deep learning methods in computer vision. But, obtaining sufficient amount of training data is challenging, specially when annotating volumetric images. This is because fully annotat ...
Object-centric learning has gained significant attention over the last years as it can serve as a powerful tool to analyze complex scenes as a composition of simpler entities. Well-established tasks in computer vision, such as object detection or instance ...