Finding stationary points on bounded-rank matrices: a geometric hurdle and a smooth remedy
Related publications (61)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The purpose of this paper is to give a self-contained proof that a complete manifold with more than one end never supports an L-q,L-p-Sobolev inequality (2
We propose a segmentation method based on the geometric representation of images as two-dimensional manifolds embedded in a higher dimensional space. The segmentation is formulated as a minimization problem, where the contours are described by a level set ...
Institute of Electrical and Electronics Engineers2014
We consider total variation (TV) minimization for manifold-valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with l(p) -type data terms in the manifold case. These algorithms are ba ...
There has been a huge increase in interest for wearable communication devices in the last ten years. Applications are manifold, ranging from rescue to fashion over medical devices and safety, leading to the definition of new standards for Body Area Network ...
Manifold models provide low-dimensional representations that are useful for processing and analyzing data in a transformation-invariant way. In this paper, we study the problem of learning smooth pattern transformation manifolds from image sets that are ob ...
Institute of Electrical and Electronics Engineers2013
For a Hamiltonian matrix with purely imaginary eigenvalues, we aim to determine the nearest Hamiltonian matrix such that some or all eigenvalues leave the imaginary axis. Conversely, for a Hamiltonian matrix with all eigenvalues lying off the imaginary axi ...
We revisit the problem of extending the notion of principal component analysis (PCA) to multivariate datasets that satisfy nonlinear constraints, therefore lying on Riemannian manifolds. Our aim is to determine curves on the manifold that retain their cano ...
We prove upper bounds for Hecke-Laplace eigenfunctions on certain Riemannian manifolds X of arithmetic type, uniformly in the eigenvalue and the volume of the manifold. The manifolds under consideration are d-fold products of 2-spheres or 3-spheres, realiz ...
Numerous dimensionality reduction problems in data analysis involve the recovery of low-dimensional models or the learning of manifolds underlying sets of data. Many manifold learning methods require the estimation of the tangent space of the manifold at a ...
Wave maps are the simplest wave equations taking their values in a Riemannian manifold (M,g). Their Lagrangian is the same as for the scalar equation, the only difference being that lengths are measured with respect to the metric g. By Noether's theorem, s ...