Gravitational wave signal from primordial magnetic fields in the Pulsar Timing Array frequency band
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Relic gravitational waves (GWs) can be produced by primordial magnetic fields. However, not much is known about the resulting GW amplitudes and their dependence on the details of the generation mechanism. Here we treat magnetic field generation through the ...
We study inflation driven by the Higgs field in the Einstein-Cartan formulation of gravity. In this theory, the presence of the Holst and Nieh-Yan terms with the Higgs field non-minimally coupled to them leads to three additional coupling constants. For a ...
We interpret the recent NANOGrav results in terms of a stochastic gravitational wave background from metastable cosmic strings. The observed amplitude of a stochastic signal can be translated into a range for the cosmic string tension and the mass of magne ...
Dark matter (DM) can consist of very light bosons behaving as a classical scalar field that experiences coherent oscillations. The presence of this DM field would perturb the dynamics of celestial bodies, either because the (oscillating) DM stress tensor m ...
The chiral magnetic effect (CME) is a quantum relativistic effect that describes the appearance of an additional electric current along a magnetic field. It is caused by an asymmetry between the number densities of left- and right-handed fermions, which ca ...
A metastable cosmic-string network is a generic consequence of many grand unified theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically stable, but decay on cosmic time scales due to pair production of GUT mon ...
In the presence of magnetic fields, gravitational waves are converted into photons and vice versa. We demonstrate that this conversion leads to a distortion of the cosmic microwave background (CMB), which can serve as a detector for MHz to GHz gravitationa ...
The expansion history of the Universe between the end of inflation and the onset of radiation-domination (RD) is currently unknown. If the equation of state during this period is stiffer than that of radiation, w > 1/3, the gravitational wave (GW) backgrou ...
The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational-wave searches at frequencies above the ...
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties o ...