Publication

Lattice-and-Plate Model: Mechanics Modeling of Physical Origami Robots

Jamie Paik, Hongying Zhang
2022
Journal paper
Abstract

Origami robots are characterized by their compact design, quasi-two-dimensional manufacturing process, and folding joint-based transmission kinematics. The physical requirements in terms of payload, range of motion, and embedding core robotic components have made it unrealistic to rely on conventional mathematical models for designing these new robots. Therefore, origami robots require a comprehensive approach to model their mechanics. Currently, there is no generalized mechanics model to achieve this goal. Therefore, in this work, we propose a nonlinear lattice-and-plate model to simulate the mechanics of physical origami robots within several seconds, including the localized bending on flexible hinges, global displacements of rigid panels, and trajectory of predefined outputs. Moreover, this proposed model captures the large displacement and self-contact of adjacent panels during locomotion. We validate the efficiency of the model on various origami actuators, grippers, and metamaterials. To conclude, the computational model can help to accelerate the design iteration of origami robots.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.