Publication

Multi-centre classification of functional neurological disorders based on resting-state functional connectivity

Abstract

Background: Patients suffering from functional neurological disorder (FND) experience disabling neurological symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time-and cost consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a "rule-in" procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to test the robustness of a classification approach based on RS FC in a multi-centre setting.Methods: This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different centres using a multivariate machine learning approach based on whole-brain resting-state functional connectivity. First, previously published results were replicated in each centre individually (intra-centre cross validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as a test set, and the data from the remaining centres as a training set (inter-centre cross-validation).Results: FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discriminant features involved the angular-and supramarginal gyri, sensorimotor cortex, cingular-and insular cortex, and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%).Conclusions: The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy controls in different centres and its robustness against inter-scanner variability. In order to generalize its use across different centres and aim for clinical application, future studies should work towards optimization of acquisition parameters and include neurological and psychiatric control groups presenting with similar symptoms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (41)
Functional neurologic disorder
Functional neurologic disorder or functional neurological disorder (FND) is a condition in which patients experience neurological symptoms such as weakness, movement disorders, sensory symptoms and blackouts. As a functional disorder there is by definition no disease process affecting the structure of the body, yet the person experiences symptoms relating to their body function. Symptoms of functional neurological disorders are clinically recognisable, but are not categorically associated with a definable organic disease.
Neurological disorder
A neurological disorder is any disorder of the nervous system. Structural, biochemical or electrical abnormalities in the brain, spinal cord or other nerves can result in a range of symptoms. Examples of symptoms include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain and altered levels of consciousness. There are many recognized neurological disorders, some relatively common, but many rare. They may be assessed by neurological examination, and studied and treated within the specialities of neurology and clinical neuropsychology.
Multiple sclerosis signs and symptoms
Multiple sclerosis can cause a variety of symptoms: changes in sensation (hypoesthesia), muscle weakness, abnormal muscle spasms, or difficulty moving; difficulties with coordination and balance; problems in speech (dysarthria) or swallowing (dysphagia), visual problems (nystagmus, optic neuritis, phosphenes or diplopia), fatigue and acute or chronic pain syndromes, bladder and bowel difficulties, cognitive impairment, or emotional symptomatology (mainly major depression).
Show more
Related publications (39)

Transient resting-state salience-limbic co-activation patterns in functional neurological disorders

Thomas William Arthur Bolton, Serafeim Loukas

Background: Functional neurological disorders were historically regarded as the manifestation of a dynamic brain lesion which might be linked to trauma or stress, although this association has not yet been directly tested yet. Analysing large-scale brain n ...
Elsevier Sci Ltd2024

Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: a scoping review

Silvestro Micera, Elena Losanno

Background Neurological disorders, such as stroke and chronic pain syndromes, profoundly impact independence and quality of life, especially when affecting upper extremity (UE) function. While conventional physical therapy has shown effectiveness in provid ...
BMC2024

Cortico-muscular connectivity is modulated by passive and active Lokomat-assisted Gait

Silvestro Micera, Fiorenzo Artoni

The effects of robotic-assisted gait (RAG) training, besides conventional therapy, on neuroplasticity mechanisms and cortical integration in locomotion are still uncertain. To advance our knowledge on the matter, we determined the involvement of motor cort ...
Berlin2023
Show more
Related MOOCs (20)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.